Archived

This topic is now archived and is closed to further replies.

Buddhas Hand

The Space and Astronomy Thread

Recommended Posts

Hubble Views a Dwarf Galaxy

01.11.13

718567main1_m101-673.JPG

› Larger image

The constellation of Ursa Major (The Great Bear) is home to Messier 101, the Pinwheel Galaxy. Messier 101 is one of the biggest and brightest spiral galaxies in the night sky. Like the Milky Way, Messier 101 is not alone, with smaller dwarf galaxies in its neighborhood.

NGC 5477, one of these dwarf galaxies in the Messier 101 group, is the subject of this image from the NASA/ESA Hubble Space Telescope. Without obvious structure, but with visible signs of ongoing star birth, NGC 5477 looks much like an typical dwarf irregular galaxy. The bright nebulae that extend across much of the galaxy are clouds of glowing hydrogen gas in which new stars are forming. These glow pinkish red in real life, although the selection of green and infrared filters through which this image was taken makes them appear almost white.

The observations were taken as part of a project to measure accurate distances to a range of galaxies within about 30 million light-years from Earth, by studying the brightness of red giant stars.

In addition to NGC 5477, the image includes numerous galaxies in the background, including some that are visible right through NGC 5477. This serves as a reminder that galaxies, far from being solid, opaque objects, are actually largely made up of the empty space between their stars.

This image is a combination of exposures taken through green and infrared filters using Hubble's Advanced Camera for Surveys. The field of view is approximately 3.3 by 3.3 arcminutes.

Share this post


Link to post
Share on other sites

NGC5477 is such a boring name...

...seeing as it's a "dwarf" galaxy, I vote for Thorin Oakenshield 5477....

Share this post


Link to post
Share on other sites

NGC5477 is such a boring name...

...seeing as it's a "dwarf" galaxy, I vote for Thorin Oakenshield 5477....

Share this post


Link to post
Share on other sites

Sun Primer: Why NASA Scientists Observe the Sun in Different Wavelengths

01.22.13

719689main1_Grid-Sun-670.jpg

› View larger

This collage of solar images from NASA's Solar Dynamics Observatory (SDO) shows how observations of the sun in different wavelengths helps highlight different aspects of the sun's surface and atmosphere. (The collage also includes images from other SDO instruments that display magnetic and Doppler information.) Credit: NASA/SDO/Goddard Space Flight Center

Taking a photo of the sun with a standard camera will provide a familiar image: a yellowish, featureless disk, perhaps colored a bit more red when near the horizon since the light must travel through more of Earth's atmosphere and consequently loses blue wavelengths before getting to the camera's lens. The sun, in fact, emits light in all colors, but since yellow is the brightest wavelength from the sun, that is the color we see with our naked eye -- which the camera represents, since one should never look directly at the sun. When all the visible colors are summed together, scientists call this “white light.”

Specialized instruments, either in ground-based or space-based telescopes, however, can observe light far beyond the ranges visible to the naked eye. Different wavelengths convey information about different components of the sun's surface and atmosphere, so scientists use them to paint a full picture of our constantly changing and varying star.

Yellow light of 5800 Angstroms, for example, generally emanates from material of about 10,000 degrees F (5700 degrees C), which represents the surface of the sun. Extreme ultraviolet light of 94 Angstroms, on the other hand, comes from atoms that are about 11 million degrees F (6,300,000 degrees C) and is a good wavelength for looking at solar flares, which can reach such high temperatures. By examining pictures of the sun in a variety of wavelengths – as is done through such telescopes as NASA's Solar Dynamics Observatory (SDO), NASA's Solar Terrestrial Relations Observatory (STEREO) and the ESA/NASA Solar and Heliospheric Observatory (SOHO) -- scientists can track how particles and heat move through the sun's atmosphere.

We see the visible spectrum of light simply because the sun is made up of a hot gas – heat produces light just as it does in an incandescent light bulb. But when it comes to the shorter wavelengths, the sun sends out extreme ultraviolet light and x-rays because it is filled with many kinds of atoms, each of which give off light of a certain wavelength when they reach a certain temperature. Not only does the sun contain many different atoms – helium, hydrogen, iron, for example -- but also different kinds of each atom with different electrical charges, known as ions. Each ion can emit light at specific wavelengths when it reaches a particular temperature. Scientists have cataloged which atoms produce which wavelengths since the early 1900s, and the associations are well documented in lists that can take up hundreds of pages.

Solar telescopes make use of this wavelength information in two ways. For one, certain instruments, known as spectrometers, observe many wavelengths of light simultaneously and can measure how much of each wavelength of light is present. This helps create a composite understanding of what temperature ranges are exhibited in the material around the sun. Spectrographs don't look like a typical picture, but instead are graphs that categorize the amount of each kind of light.

On the other hand, instruments that produce conventional images of the sun focus exclusively on light around one particular wavelength, sometimes not one that is visible to the naked eye. SDO scientists, for example, chose 10 different wavelengths to observe for its Atmospheric Imaging Assembly (AIA) instrument. Each wavelength is largely based on a single, or perhaps two types of ions – though slightly longer and shorter wavelengths produced by other ions are also invariably part of the picture. Each wavelength was chosen to highlight a particular part of the sun's atmosphere.

From the sun's surface on out, the wavelengths SDO observes, measured in Angstroms, are:

  • 4500: Showing the sun's surface or photosphere.

  • 1700: Shows surface of the sun, as well as a layer of the sun's atmosphere called the chromosphere, which lies just above the photosphere and is where the temperature begins rising.

  • 1600: Shows a mixture between the upper photosphere and what's called the transition region, a region between the chromosphere and the upper most layer of the sun's atmosphere called the corona. The transition region is where the temperature rapidly rises.

  • 304: This light is emitted from the chromosphere and transition region.

  • 171: This wavelength shows the sun's atmosphere, or corona, when it's quiet. It also shows giant magnetic arcs known as coronal loops.

  • 193: Shows a slightly hotter region of the corona, and also the much hotter material of a solar flare.

  • 211: This wavelength shows hotter, magnetically active regions in the sun's corona.

  • 335: This wavelength also shows hotter, magnetically active regions in the corona.

  • 94: This highlights regions of the corona during a solar flare.

  • 131: The hottest material in a flare.

    For more technical information about which ions produce which wavelengths, roll your mouse over the grid of SDO images below.

    717606main_Sun-Wavelength-670.jpg

    › View larger

    Each of the wavelengths observed by NASA's Solar Dynamics Observatory (SDO) was chosen to emphasize a specific aspect of the sun's surface or atmosphere. This image shows imagery both from the Advanced Imaging Assembly (AIA), which helps scientists observe how solar material moves around the sun's atmosphere, and the Helioseismic and Magnetic Imager (HMI), which focuses on the movement and magnetic properties of the sun's surface. Credit: NASA/SDO/Goddard Space Flight Center

    › View detail for all wavelengths

Share this post


Link to post
Share on other sites

You know, solar system is so humungous big, right?

- Ilya Nikolayevich Bryzgalov

Philosopher, Astonomer, Physicist

Share this post


Link to post
Share on other sites

'Hi-C' Mission Sees Energy in the Sun's Corona

01.23.13

721434main_sun_hires_360.jpg

721429main1_20120105_155134_226.jpg The Hi-C instrument on the integration table at the Harvard-Smithsonian Center for Astrophysics. (NASA/MSFC)

721431main1_LAR-5553._226.jpg The Hi C payload and the subsystems rest on the desert after parachuting back to Earth. (NASA/MSFC)

721427main1_WSMR2012_LAR-5603_226.jpg The recovering team poses for a photo with the payload before loading the instrument in a pair of U.S. Army Helicopters and returning to base. (NASA/MSFC)

› View all photos/full captions

› Media briefing photos/videos The optics engineering expertise at the NASA's Marshall Space Flight Center in Huntsville, Ala., made it possible for a group of solar scientist to see into the sun's corona in unprecedented detail. The final mirror configuration was completed with inputs from partners at the Smithsonian Astrophysical Observatory, or SAO, in Cambridge, Mass., and a new manufacturing technique developed in coordination with L-3Com/Tinsley Laboratories of Richmond, Calif.

The High Resolution Coronal Imager, or Hi-C, captured the highest-resolution images ever taken of the million-degree solar corona using a resolution five times higher than previous imagers. The corona is hotter than the solar surface and is the location where solar flares occur and energy is released that drive solar storms that can impact Earth.

Weighing 464 pounds, the 6-foot-long Hi-C telescope took 165 images during its brief 620-second sounding rocket flight July 11. The telescope focused on a large active region on the sun, with some images revealing the dynamic structure of the solar atmosphere in fine detail. When combined with the full sun images from NASA’s Solar Dynamics Observatory, SDO, a new picture of the solar corona is now emerging.

Hi-C's mirrors are approximately 9.5 inches across, roughly the same size as the SDO, instrument’s mirrors. However, due to a set of innovations on Hi-C's optics array, the nimble telescope was able to peer deeper into the sun's corona in the extreme ultraviolet wavelength.

"These mirrors were to be the finest pieces of glass ever fabricated for solar astrophysics," said Marshall heliophysicist Dr. Jonathan Cirtain, principal investigator on the Hi-C mission. "We had never attempted such a program before and had to develop new techniques for grinding the optics and polishing the surfaces, not to mention figuring out how to mount them without diminishing the performance. The final mirror surface is so smooth that it only deviates from being perfectly smooth by a few angstroms over the 24 cm optic."

Using these quality optics, images were acquired at a rate of approximately one every five seconds and provided proof of a long-standing theory to explain solar coronal dynamics.

The optical design was provided by scientists and engineers from Marshall’s Science and Technology Office as well as SAO personnel. "Dr. Cirtain asked us to develop the mirrors initially to see how well we could make them," said John Calhoun, Lead for Optics at Marshall. "The initial specifications were only a goal; however, we made such excellent progress on them that Dr. Cirtain was able to get the funding for his flight demonstration. Credit belongs to the superb work performed by our senior opticians, although their initial response to the very challenging fabrication was to refer to the optics as the “oh, my god” mirrors."

Watch a video of Hi-C's observations of the sun:http://www.nasa.gov/multimedia/videogallery/index.html?media_id=158799741

Scientists at Lededev Physical Institute in Moscow, Russia developed the filters for the instrument front aperture plate. These whisper thin filters reject the unwanted wavelengths of light and only transmit the extreme ultraviolet spectrum.

The high-quality optics were aligned with extreme accuracy. Mounting of the mirrors in the telescope was done using a new method that significantly reduced the impact of the process on the shape of the mirrors. Scientists and engineers from SAO, along with Marshall and the University of Alabama in Huntsville, worked to complete alignment of the mirrors, maintaining optic spacing to within a few ten-thousandths of an inch. This innovative approach to aligning and installing the mirrors then had to be maintained so the instrument could survive the harsh vibration and thermal conditions during launch and flight of the rocket.

Scientists have worked for the better part of a decade designing and building test facilities, followed by development, fabrication and testing of the optics.

"This flight represents the culmination of thirty-years of effort to develop these exceptionally high quality optics," said Co-investigator Dr. Leon Golub of SAO.

Marshall scientists and engineers also partnered with engineers from the University of Central Lancashire and Apogee Imaging Systems in Richmond, CA to develop a large format camera detector (16 megapixel) with a high speed image readout. The combination of the optics, the telescope and the camera system combined to deliver the highest cadence and highest resolution image set yet collected for the solar million degree atmosphere.

"As for the findings from Hi-C, the most important implication to me is the realization that at 150 km spatial resolution and an image cadence of five seconds, solar astrophysics can make multiple major advances in the science of how stars work and evolve," said Cirtain. "That, I find, is breathtaking, especially for a sounding rocket to discover."

Partners associated with the development of the Hi-C telescope also include Lockheed Martin's Solar Astrophysical Laboratory in Palo Alto, Calif.; the University of Central Lancashire in Lancashire, England; the Lebedev Physical Institute of the Russian Academy of Sciences in Moscow; and the Southwest Research Institute in Boulder, Colo.

Share this post


Link to post
Share on other sites

NASA Officially Joins ESA's 'Dark Universe' Mission

01.24.13

721011main1_Euclid-L2_artist-impression-673.jpg This artist's concept shows the Euclid spacecraft. The telescope will launch to an orbit around the sun-Earth Lagrange point L2. The Lagrange point is a location where the gravitational pull of two large masses, the sun and Earth in this case, precisely equals the force required for a small object, such as the Euclid spacecraft, to maintain a relatively stationary position behind Earth as seen from the sun. Image credit: ESA/C. Carreau

› Larger view

PASADENA, Calif. -- NASA has joined the European Space Agency's (ESA's) Euclid mission, a space telescope designed to investigate the cosmological mysteries of dark matter and dark energy.

Euclid will launch in 2020 and spend six years mapping the locations and measuring the shapes of as many as 2 billion galaxies spread over more than one-third of the sky. It will study the evolution of our universe, and the dark matter and dark energy that influence its evolution in ways that still are poorly understood.

The telescope will launch to an orbit around the sun-Earth Lagrange point L2. The Lagrange point is a location where the gravitational pull of two large masses, the sun and Earth in this case, precisely equals the force required for a small object, such as the Euclid spacecraft, to maintain a relatively stationary position behind Earth as seen from the sun.

"NASA is very proud to contribute to ESA's mission to understand one of the greatest science mysteries of our time," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate at the agency's Headquarters in Washington.

NASA and ESA recently signed an agreement outlining NASA's role in the project. NASA will contribute 16 state-of-the-art infrared detectors and four spare detectors for one of two science instruments planned for Euclid.

"ESA's Euclid mission is designed to probe one of the most fundamental questions in modern cosmology, and we welcome NASA's contribution to this important endeavor, the most recent in a long history of cooperation in space science between our two agencies," said Alvaro Giménez, ESA's Director of Science and Robotic Exploration.

In addition, NASA has nominated three U.S. science teams totaling 40 new members for the Euclid Consortium. This is in addition to 14 U.S. scientists already supporting the mission. The Euclid Consortium is an international body of 1,000 members who will oversee development of the instruments, manage science operations and analyze data.

Euclid will map the dark matter in the universe. Matter as we know it -- the atoms that make up the human body, for example -- is a fraction of the total matter in the universe. The rest, about 85 percent, is dark matter consisting of particles of an unknown type. Dark matter first was postulated in 1932, but still has not been detected directly. It is called dark matter because it does not interact with light. Dark matter interacts with ordinary matter through gravity and binds galaxies together like an invisible glue.

While dark matter pulls matter together, dark energy pushes the universe apart at ever-increasing speeds. In terms of the total mass-energy content of the universe, dark energy dominates. Even less is known about dark energy than dark matter.

Euclid will use two techniques to study the dark universe, both involving precise measurements of galaxies billions of light-years away. The observations will yield the best measurements yet of how the acceleration of the universe has changed over time, providing new clues about the evolution and fate of the cosmos.

Euclid is an ESA mission with science instruments provided by a consortia of European institutes and with important participation from NASA. NASA's Euclid Project Office is based at NASA's Jet Propulsion Laboratory in Pasadena, Calif. JPL will contribute the infrared flight detectors for the Euclid science instrument. NASA's Goddard Space Flight Center in Greenbelt, Md., will test the infrared flight detectors prior to delivery. Three U.S. science teams will contribute to science planning and data analysis. JPL is managed by for NASA by the California Institute of Technology in Pasadena

Share this post


Link to post
Share on other sites

Herschel Finds Past-Prime Star May Be Making Planets

01.30.13

723550main_pia16683-673.jpg This artist's illustration shows a planetary disk (left) that weighs the equivalent of 50 Jupiter-mass planets. Image credit: NASA/JPL-Caltech › Full image and caption

598000main_pia14870-43_226-170.jpg This artist's concept illustrates the planet-forming disk around TW Hydrae, located about 175 light-years away in the Hydra, or Sea Serpent, constellation. Image credit: NASA/JPL-Caltech

› Full image and caption

PASADENA, Calif. -- A star thought to have passed the age at which it can form planets may, in fact, be creating new worlds. The disk of material surrounding the surprising star called TW Hydrae may be massive enough to make even more planets than we have in our own solar system.

The findings were made using the European Space Agency's Herschel Space Telescope, a mission in which NASA is a participant.

At roughly 10 million years old and 176 light years away, TW Hydrae is relatively close to Earth by astronomical standards. Its planet-forming disk has been well studied. TW Hydrae is relatively young but, in theory, it is past the age at which giant planets already may have formed.

"We didn't expect to see so much gas around this star," said Edwin Bergin of the University of Michigan in Ann Arbor. Bergin led the new study appearing in the journal Nature. "Typically stars of this age have cleared out their surrounding material, but this star still has enough mass to make the equivalent of 50 Jupiters," Bergin said.

In addition to revealing the peculiar state of the star, the findings also demonstrate a new, more precise method for weighing planet-forming disks. Previous techniques for assessing the mass were indirect and uncertain. The new method can directly probe the gas that typically goes into making planets.

Planets are born out of material swirling around young stars, and the mass of this material is a key factor controlling their formation. Astronomers did not know before the new study whether the disk around TW Hydrae contained enough material to form new planets similar to our own.

"Before, we had to use a proxy to guess the gas quantity in the planet-forming disks," said Paul Goldsmith, the NASA project scientist for Herschel at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "This is another example of Herschel's versatility and sensitivity yielding important new results about star and planet formation."

Using Herschel, scientists were able to take a fresh look at the disk with the space telescope to analyze light coming from TW Hydrae and pick out the spectral signature of a gas called hydrogen deuteride. Simple hydrogen molecules are the main gas component of planets, but they emit light at wavelengths too short to be detected by Herschel. Gas molecules containing deuterium, a heavier version of hydrogen, emit light at longer, far-infrared wavelengths that Herschel is equipped to see. This enabled astronomers to measure the levels of hydrogen deuteride and obtain the weight of the disk with the highest precision yet.

"Knowing the mass of a planet-forming disk is crucial to understanding how and when planets take shape around other stars," said Glenn Wahlgren, Herschel program scientist at NASA Headquarters in Washington.

Whether TW Hydrae's large disk will lead to an exotic planetary system with larger and more numerous planets than ours remains to be seen, but the new information helps define the range of possible planet scenarios.

"The new results are another important step in understanding the diversity of planetary systems in our universe," said Bergin. "We are now observing systems with massive Jupiters, super-Earths, and many Neptune-like worlds. By weighing systems at their birth, we gain insight into how our own solar system formed with just one of many possible planetary configurations."

Share this post


Link to post
Share on other sites

First photo of alien planet forming

March 1, 2013, 4:49 pm Clara Moskowitz SPACE.COM

News

star130301nasa450_18j0gas-18j0gc4.jpg?x=292&sig=QZ0ZAGWcmvI3xpapj0dkXg--

Enlarge photo

Astronomers have captured what may be the first-ever direct photograph of an alien planet in the process of forming around a nearby star.

The picture, which captured a giant alien planet as it is coming together, was snapped by the European Southern Observatory's Very Large Telescope in Chile.

It shows a faint blob embedded in a thick disk of gas and dust around the young star HD 100546. The object appears to be a baby gas giant planet, similar to Jupiter, forming from the disk's material, scientists say.

"So far, planet formation has mostly been a topic tackled by computer simulations," astronomer Sascha Quanz of ETH Zurich in Switzerland, leader of the research team, said in a statement. "If our discovery is indeed a forming planet, then for the first time scientists will be able to study the planet formation process and the interaction of a forming planet and its natal environment empirically at a very early stage."

The star HD 100546, which lies 335 light-years from Earth, was already thought to host another giant planet that orbits it about six times farther out than the Earth is from the sun. The new potential planet lies even farther, about 10 times the distance of its sibling, at roughly 70 times the stretch between the Earth and sun.

The possible planet seems to fit the picture scientists are building of how worlds form. Stars themselves are born in clouds of gas and dust, and after the form, a disk of leftover material often orbits them. From this disk, baby planets can take shape. That's what appears to be happening here.

For example, the new photo reveals structures in the disk surrounding the star that could be caused by interactions between its material and the forming planet. Furthermore, the data suggest the material around the planet-blob has been heated up, which is consistent with the planet-forming hypothesis.

The observations were made possible by the NACO adaptive optics instrument on the Very Large Telescope, which compensates for the blurring caused by Earth's atmosphere. The instrument also uses a special coronagraph that observes in near-infrared wavelengths to block out the bright light from the star, so as to see its surroundings better.

"Exoplanet research is one of the most exciting new frontiers in astronomy, and direct imaging of planets is still a new field, greatly benefiting from recent improvements in instruments and data analysis methods," said Adam Amara, another member of the team.

"In this research we used data analysis techniques developed for cosmological research, showing that cross-fertilization of ideas between fields can lead to extraordinary progress."

The findings are detailed in a paper to appear online in the Astrophysical Journal Letters

Share this post


Link to post
Share on other sites

^^ Thats awesome.. just think... it's entirely possible there was some alien race taking a picture of earth as it was forming almost 5 billion years ago just like this.. very cool.

Share this post


Link to post
Share on other sites

Hunting Massive Stars with Herschel

03.28.13

737661main_pia16881-673.jpg W3 is an enormous stellar nursery about 6,200 light-years away in the Perseus Arm, one of the Milky Way galaxy’s main spiral arms, which hosts both low- and high-mass star formation. Image credit: ESA/PACS & SPIRE consortia, A. Rivera-Ingraham & P.G. Martin, Univ. Toronto, HOBYS Key Programme (F. Motte) › Full image and caption

In this new view of a vast star-forming cloud called W3, the Herschel space observatory tells the story of how massive stars are born. Herschel is a European Space Agency mission with important NASA contributions. W3 is a giant gas cloud containing an enormous stellar nursery, some 6,200 light-years away in the Perseus Arm, one of our Milky Way galaxy's main spiral arms.

By studying regions of massive star formation in W3, scientists have made progress in solving one of the major conundrums in the birth of massive stars. That is, even during their formation, the radiation blasting away from these stars is so powerful that they should push away the very material from which they feed. If this is the case, how can massive stars form at all?

Observations of W3 point toward a possible solution: in these very dense regions, there appears to be a continuous process by which the raw material is moved around, compressed and confined, under the influence of clusters of young, massive stars called protostars.

Through their strong radiation and powerful winds, populations of young, high-mass stars may well be able to build and maintain localized clumps of material from which they can continue to feed during their earliest and most chaotic years, despite their incredible energy output.

The W3 star-formation complex is one of the largest in the outer Milky Way, hosting the formation of both low- and high-mass stars. The distinction between low- and high-mass stars is drawn at eight times the mass of our own sun: above this limit, stars end their lives as supernovas.

Dense, bright blue knots of hot dust marking massive star formation dominate the upper left of the image. Intense radiation streaming away from the stellar infants heats up the surrounding dust and gas, making it shine brightly in Herschel's infrared-sensitive eyes.

Older high-mass stars are also seen to be heating up dust in their environments, appearing as the blue regions, for example, lower down and to the left.

Extensive networks of much colder gas and dust weave through the scene in the form of red filaments and pillar-like structures. Several of these cold cores conceal low-mass star formation, hinted at by tiny yellow knots of emission.

Herschel is a European Space Agency mission, with science instruments provided by consortia of European institutes and with important participation by NASA. NASA's Herschel Project Office is based at NASA's Jet Propulsion Laboratory, Pasadena, Calif. JPL contributed mission-enabling technology for two of Herschel's three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, supports the United States astronomical community. Caltech manages JPL for NASA.

This study was led by Alana Rivera-Ingraham, a graduate student of Peter Martin at the Canadian Institute for Theoretical Astrophysics, the University of Toronto, Canada

Share this post


Link to post
Share on other sites

Thought I'd add this here:

http://home.web.cern.ch/about/updates/2013/04/ams-experiment-measures-antimatter-excess-space

“As the most precise measurement of the cosmic ray positron flux to date, these results show clearly the power and capabilities of the AMS detector,” said AMS spokesperson, Samuel Ting. “Over the coming months, AMS will be able to tell us conclusively whether these positrons are a signal for dark matter, or whether they have some other origin.”

Share this post


Link to post
Share on other sites

In case anyone is interested, I have found a very cool space simulation program called Space Engine.

http://en.spaceengine.org/

Unfortunately, there are fairly specific requirements. For example, I cant seem to get much of those exotic surface features.

System requirements

Minimum/Recommended

CPU 2 GHz/3 GHz

RAM 2 Gb/2 Gb

Video 512 Mb/1024 Mb

OpenGL 3.0/3.0

OS WindowsXP/Windows 7

Share this post


Link to post
Share on other sites

  • Recently Browsing   0 members

    No registered users viewing this page.