Jump to content
The Official Site of the Vancouver Canucks
Canucks Community

The Space and Astronomy Thread


Buddhas Hand

Recommended Posts

713685main_apod_cropped_946-710.jpg

Giant Stellar Nursery

Stars are sometimes born in the midst of chaos. About 3 million years ago in the nearby galaxy M33, a large cloud of gas spawned dense internal knots which gravitationally collapsed to form stars. NGC 604 was so large, however, it could form enough stars to make a globular cluster.

Many young stars from this cloud are visible in this image from the Hubble Space Telescope, along with what is left of the initial gas cloud. Some stars were so massive they have already evolved and exploded in a supernova. The brightest stars that are left emit light so energetic that they create one of the largest clouds of ionized hydrogen gas known, comparable to the Tarantula Nebula in our Milky Way's close neighbor, the Large Magellanic Cloud.

Link to comment
Share on other sites

Shot Away from its Companion, Giant Star Makes Waves

12.18.12

714775main_pia16604-673.jpg The giant star Zeta Ophiuchi is having a "shocking" effect on the surrounding dust clouds in this infrared image from NASA’s Spitzer Space Telescope. Image credit: NASA/JPL-Caltech › Full image and caption

Like a ship plowing through still waters, the giant star Zeta Ophiuchi is speeding through space, making waves in the dust ahead. NASA's Spitzer Space Telescope has captured a dramatic, infrared portrait of these glowing waves, also known as a bow shock.

Astronomers theorize that this star was once sitting pretty next to a companion star even heftier than itself. But when that star died in a fiery explosion, Zeta Ophiuchi was kicked away and sent flying. Zeta Ophiuchi, which is 20 times more massive and 80,000 times brighter than our sun, is racing along at about 54,000 mph (24 kilometers per second).

In this view, infrared light that we can't see with our eyes has been assigned visible colors. Zeta Ophiuchi appears as the bright blue star at center. As it charges through the dust, which appears green, fierce stellar winds push the material into waves. Where the waves are the most compressed, and the warmest, they appear red. This bow shock is analogous to the ripples that precede the bow of a ship as it moves through the water, or the pileup of air ahead of a supersonic airplane that results in a sonic boom.

NASA's Wide-field Infrared Survey Explorer, or WISE, released a similar picture of the same object in 2011. WISE sees infrared light as does Spitzer, but WISE was an all-sky survey designed to take snapshots of the entire sky. Spitzer, by contrast, observes less of the sky, but in more detail. The WISE image can be seen at: http://www.nasa.gov/mission_pages/WISE/news/wise20110124.html .

Link to comment
Share on other sites

From Cassini for the Holidays: A Splendor Seldom Seen

12.18.12

714613main_pia14934-673.jpg NASA's Cassini spacecraft has delivered a glorious view of Saturn, taken while the spacecraft was in Saturn's shadow. Image credit: NASA/JPL-Caltech/Space Science Institute › Full image and caption

PASADENA, Calif -- Just in time for the holidays, NASA's Cassini spacecraft, in orbit around Saturn for more than eight years now, has delivered another glorious, backlit view of the planet Saturn and its rings.

On Oct. 17, 2012, during its 174th orbit around the gas giant, Cassini was deliberately positioned within Saturn's shadow, a perfect location from which to look in the direction of the sun and take a backlit view of the rings and the dark side of the planet. Looking back towards the sun is a geometry referred to by planetary scientists as "high solar phase;" near the center of your target's shadow is the highest phase possible. This is a very scientifically advantageous and coveted viewing position, as it can reveal details about both the rings and atmosphere that cannot be seen in lower solar phase.

The last time Cassini had such an unusual perspective on Saturn and its rings, at sufficient distance and with sufficient time to make a full system mosaic, occurred in September 2006, when it captured a mosaic, processed to look like natural color, entitled "In Saturn's Shadow." In that mosaic, planet Earth put in a special appearance, making "In Saturn's Shadow" one of the most popular Cassini images to date.

The mosaic being released today by the mission and the imaging team, in celebration of the 2012 holiday season, does not contain Earth; along with the sun, our planet is hidden behind Saturn. However, it was taken when Cassini was closer to Saturn and therefore shows more detail in the rings than the one taken in 2006.

The new processed mosaic, composed of 60 images taken in the violet, visible and near infrared part of the spectrum, can be found at http://www.nasa.gov/cassini , http://saturn.jpl.nasa.gov and http://ciclops.org .

"Of all the many glorious images we have received from Saturn, none are more strikingly unusual than those taken from Saturn's shadow," said Carolyn Porco, Cassini's imaging team lead based at the Space Science Institute in Boulder, Colo.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team consists of scientists from the U.S., England, France and Germany. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

Link to comment
Share on other sites

715712main_holiday_cropped_946-710.jpg

A Cosmic Holiday Ornament, Hubble-Style

'Tis the season for holiday decorating and tree-trimming. Not to be left out, astronomers using NASA's Hubble Space Telescope have photographed a festive-looking nearby planetary nebula called NGC 5189. The intricate structure of this bright gaseous nebula resembles a glass-blown holiday ornament with a glowing ribbon entwined.

Planetary nebulae represent the final brief stage in the life of a medium-sized star like our sun. While consuming the last of the fuel in its core, the dying star expels a large portion of its outer envelope. This material then becomes heated by the radiation from the stellar remnant and radiates, producing glowing clouds of gas that can show complex structures, as the ejection of mass from the star is uneven in both time and direction.

A spectacular example of this beautiful complexity is seen in the bluish lobes of NGC 5189. Most of the nebula is knotty and filamentary in its structure. As a result of the mass-loss process, the planetary nebula has been created with two nested structures, tilted with respect to each other, that expand away from the center in different directions.

Link to comment
Share on other sites

  • 2 weeks later...

It seems our solar system is a "rare one" ,

Billions and Billions of Planets

01.03.2013

717258main_pia11824-673.jpg This artist's concept shows the Kepler spacecraft. Image credit: NASA/Ames/JPL-Caltech

› Larger image

Look up at the night sky and you'll see stars, sure. But the sky is also filled with planets -- billions and billions of them at least.

That's the conclusion of a new study by astronomers at the California Institute of Technology in Pasadena, which provides yet more evidence that planetary systems are the cosmic norm. The team made their estimate while analyzing planets orbiting a star called Kepler-32 -- planets that are representative, they say, of the vast majority of planets in our galaxy and thus serve as a perfect case study for understanding how most of these worlds form.

"There are at least 100 billion planets in the galaxy, just our galaxy," says John Johnson, assistant professor of planetary astronomy at Caltech and coauthor of the study, which was recently accepted for publication in the Astrophysical Journal. "That's mind-boggling."

"It's a staggering number, if you think about it," adds Jonathan Swift, a postdoctoral student at Caltech and lead author of the paper. "Basically, there's one of these planets per star."

One of the fundamental questions regarding the origin of planets is how many of them there are. Like the Caltech group, other teams of astronomers have estimated that there is roughly one planet per star, but this is the first time researchers have made such an estimate by studying M-dwarf systems, the most numerous population of planets known.

The planetary system in question, which was detected by NASA's Kepler space telescope, contains five planets. Two of the planets orbiting Kepler-32 had previously been discovered by other astronomers. The Caltech team confirmed the remaining three, then analyzed the five-planet system and compared it to other systems found by Kepler.

M-dwarf systems like Kepler-32's are quite different from our own solar system. For one, M dwarfs are cooler and much smaller than the sun. Kepler-32, for example, has half the mass of the sun and half its radius. The radii of its five planets range from 0.8 to 2.7 times that of Earth, and those planets orbit extremely close to their star. The whole Kepler-32 system fits within just over a tenth of an astronomical unit (the average distance between Earth and the sun) -- a distance that is about a third of the radius of Mercury's orbit around the sun.

The fact that M-dwarf systems vastly outnumber other kinds of systems carries a profound implication, according to Johnson, which is that our solar system is extremely rare. "It's just a weirdo," he says.

Read the full Caltech story at http://www.caltech.edu/content/planets-abound .

Link to comment
Share on other sites

717273main_solar_dance_cropped_946-710.jpg

Solar Eruption

A solar eruption gracefully rose up from the sun on Dec. 31, 2012, twisting and turning. Magnetic forces drove the flow of plasma, but without sufficient force to overcome the sun’s gravity much of the plasma fell back into the sun.

The length of the eruption extends about 160,000 miles out from the Sun. With Earth about 7,900 miles in diameter, this relatively minor eruption is about 20 times the diameter of our planet

http://www.nasa.gov/multimedia/videogallery/index.html?media_id=158014611

Link to comment
Share on other sites

I'm still trying to get over the fact that we have at least 100 billion planets in our galaxy, especially considering that there are approximately 176 billion galaxies in the known universe. Bryzgalov couldn't have said it any better.

Link to comment
Share on other sites

paleblue.jpg

Look again at that dot. That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician, every ‘superstar,’ every ‘supreme leader,’ every saint and sinner in the history of our species lived there — on a mote of dust suspended in a sunbeam.

The Earth is a very small stage in a vast cosmic arena. Think of the rivers of blood spilled by all those generals and emperors so that, in glory and triumph, they could become the momentary masters of a fraction of a dot. Think of the endless cruelties visited by the inhabitants of one corner of this pixel on the scarcely distinguishable inhabitants of some other corner, how frequent their misunderstandings, how eager they are to kill one another, how fervent their hatreds.

Our posturings, our imagined self-importance, the delusion that we have some privileged position in the Universe, are challenged by this point of pale light. Our planet is a lonely speck in the great enveloping cosmic dark. In our obscurity, in all this vastness, there is no hint that help will come from elsewhere to save us from ourselves.

The Earth is the only world known so far to harbor life. There is nowhere else, at least in the near future, to which our species could migrate. Visit, yes. Settle, not yet. Like it or not, for the moment the Earth is where we make our stand.

It has been said that astronomy is a humbling and character-building experience. There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we’ve ever known.

-Carl Sagan

Link to comment
Share on other sites

Quote

It has been said that astronomy is a humbling and character-building experience. There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we’ve ever known.

Right on Brother

Link to comment
Share on other sites

NASA's Kepler Mission Discovers 461 New Planet Candidates

01.07.2013

717592main_NewCandidatesbySize-07Jan13_673.jpg Click image for full caption and more resolutions

Size of Kepler Planet Candidates: Since the last Kepler catalog, the number of candidates discovered in the Kepler data has increased by 20 percent and now totals 2,740 potential planets orbiting 2,036 stars.

717565main1_Kepler_skittlesFOV2_226x170.jpg NASA's Kepler mission Monday announced the discovery of 461 new planet candidates. Four of the potential new planets are less than twice the size of Earth and orbit in their sun's "habitable zone," the region in the planetary system where liquid water might exist on the surface of a planet.

Based on observations conducted from May 2009 to March 2011, the findings show a steady increase in the number of smaller-size planet candidates and the number of stars with more than one candidate.

"There is no better way to kickoff the start of the Kepler extended mission than to discover more possible outposts on the frontier of potentially life bearing worlds," said Christopher Burke, Kepler scientist at the SETI Institute in Mountain View, Calif., who is leading the analysis.

Since the last Kepler catalog was released in February 2012, the number of candidates discovered in the Kepler data has increased by 20 percent and now totals 2,740 potential planets orbiting 2,036 stars. The most dramatic increases are seen in the number of Earth-size and super Earth-size candidates discovered, which grew by 43 and 21 percent respectively.

The new data increases the number of stars discovered to have more than one planet candidate from 365 to 467. Today, 43 percent of Kepler's planet candidates are observed to have neighbor planets.

"The large number of multi-candidate systems being found by Kepler implies that a substantial fraction of exoplanets reside in flat multi-planet systems," said Jack Lissauer, planetary scientist at NASA's Ames Research Center in Moffett Field, Calif. "This is consistent with what we know about our own planetary neighborhood."

The Kepler space telescope identifies planet candidates by repeatedly measuring the change in brightness of more than 150,000 stars in search of planets that pass in front, or "transit," their host star. At least three transits are required to verify a signal as a potential planet.

Scientists analyzed more than 13,000 transit-like signals to eliminate known spacecraft instrumentation and astrophysical false positives, phenomena that masquerade as planetary candidates, to identify the potential new planets.

Candidates require additional follow-up observations and analyses to be confirmed as planets. At the beginning of 2012, 33 candidates in the Kepler data had been confirmed as planets. Today, there are 105.

"The analysis of increasingly longer time periods of Kepler data uncovers smaller planets in longer period orbits-- orbital periods similar to Earth's," said Steve Howell, Kepler mission project scientist at Ames. "It is no longer a question of will we find a true Earth analogue, but a question of when."

The complete list of Kepler planet candidates is available in an interactive table at the NASA Exoplanet Archive. The archive is funded by NASA's Exoplanet Exploration Program to collect and make public data to support the search for and characterization of exoplanets and their host stars.

Ames manages Kepler's ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., managed Kepler mission development. Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with JPL at the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data. Kepler is NASA's 10th Discovery Mission and is funded by NASA's Science Mission Directorate at the agency's headquarters in Washington.

Link to comment
Share on other sites

SOFIA Spots Recent Starbursts in the Milky Way Galaxy's Center

January 8, 2013

717929main2_1a_SOFIA-FORCAST_CNR_black_hole_226L.jpgSOFIA/FORCAST mid-infrared image of the Milky Way galaxy’s nucleus showing the Circumnuclear Ring (CNR) of gas and dust clouds orbiting a central supermassive black hole. The bright Y-shaped feature is believed to be material falling from the ring toward the black hole that is located where the arms of the “Y” intersect. (NASA/SOFIA/FORCAST team/Lau et al. ) › View Larger Image

717933main2_1b_Hubble_NICMOS_CNR_black_hole_226L.jpgHubble Space Telescope/NICMOS near-infrared image showing the same field of view with the same scale and orientation as the image above. At this wavelength, opaque dust in the plane of the Milky Way hides features that are seen in the SOFIA image. (NASA/STScI) › View Larger Image

717935main2_2a_SOFIA_FORCAST_QC_226L.jpgSOFIA/FORCAST mid-infrared image of a region including the Quintuple Cluster (QC), a group of young stars near the left margin of the frame, located about 35 parsecs (100 light years) from the galaxy’s nucleus. (NASA/SOFIA/Hankins et al.) › View Larger Image

717937main2_2b_Hubble_NICMOS_QC_226L.jpgHubble Space Telescope/NICMOS image of the QC region matching the SOFIA/FORCAST field of view in the third image above. The QC itself is at the left of the frame. Most of the features in the SOFIA mid-infrared image are not seen in the HST image due to their low temperatures and intervening interstellar dust. (NASA/STScI) › View Larger Image WASHINGTON -- Researchers using the Stratospheric Observatory for Infrared Astronomy (SOFIA) have captured new images of a ring of gas and dust seven light-years in diameter surrounding the supermassive black hole at the center of the Milky Way, and of a neighboring cluster of extremely luminous young stars embedded in dust cocoons.

The images of our galaxy's circumnuclear ring (CNR) and its neighboring quintuplet cluster (QC) are the subjects of two posters presented this week during the American Astronomical Society's meeting in Long Beach, Calif. Ryan Lau of Cornell University and his collaborators studied the CNR. Matt Hankins of the University of Central Arkansas in Conway is lead author of the other paper, regarding the QC.

SOFIA is a highly modified Boeing 747SP aircraft carrying a telescope with an effective diameter of 100 inches (2.54 meters) to altitudes as high as 45,000 feet (13.7 kilometers).

The images were obtained during SOFIA flights in 2011 with the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) instrument built by a team with principal investigator Terry Herter of Cornell.

FORCAST offered astronomers the ability to see the CNR and QC regions and other exotic cosmic features whose light is obscured by water vapor in Earth's atmosphere and interstellar dust clouds in the mid-plane of the Milky Way. Neither ground-based observatories on tall mountain peaks nor NASA's orbiting Hubble and Spitzer space telescopes can see them.

The images may be seen by visiting:

Each image is a combination of multiple exposures at wavelengths of 20, 32, and 37 microns.

Figure 1a shows the CNR and Figure 2a shows the QC. The CNR and other exotic features revealed by SOFIA's FORCAST camera are invisible to Hubble's near-infrared camera, as shown for comparison in figures 1b and 2b. Figure 3 shows the two fields studied in these papers as square insets on a large-scale image of the galactic center made by the Spitzer Space Telescope at a wavelength of 8 microns.

"The focus of our study has been to determine the structure of the circumnuclear ring with the unprecedented precision possible with SOFIA" said Lau. "Using these data we can learn about the processes that accelerate and heat the ring."

The nucleus of the Milky Way is inhabited by a black hole with 4 million times the mass of the sun and is orbited by a large disk of gas and dust. The ring seen in Figure 1a is the inner edge of that disk. The galactic center also hosts several exceptionally large star clusters containing some of the most luminous young stars in the galaxy, one of which is the Quintuplet Cluster seen in Figure 2. The combination of SOFIA's airborne telescope with the FORCAST camera produced the sharpest images of those regions ever obtained at mid-infrared wavelengths, allowing discernment of new clues about what is happening near the central black hole.

"Something big happened in the Milky Way's center within the past 4 million to 6 million years which resulted in several bursts of star formation, creating the Quintuplet Cluster, the Central Cluster, and one other massive star cluster." said Hankins, lead author of the QC paper. "Many other galaxies also have so-called 'starbursts' in their central regions, some associated with central black holes, some not. The Milky Way's center is much nearer than other galaxies, making it easier for us to explore possible connections between the starbursts and the black hole."

SOFIA Chief Scientific Advisor Eric Becklin, who is working with the CNR group, determined the location of the galaxy's nucleus as a graduate student in the 1960s by laboriously scanning a single-pixel infrared detector to map the central region.

"The resolution and spatial coverage of these images is astounding, showing what modern infrared detector arrays can do when flown on SOFIA," Becklin said. "We hope to use these data to substantially advance our understanding of the environment near a supermassive black hole."

SOFIA is a joint project of NASA and the German Aerospace Center. SOFIA is based and managed at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif. NASA's Ames Research Center in Moffett Field, Calif., manages the SOFIA science and mission operations in cooperation with the Universities Space Research Association headquartered in Columbia, Md., and the German SOFIA Institute at the University of Stuttgart

Link to comment
Share on other sites

NASA's GALEX Reveals the Largest-Known Spiral Galaxy

01.10.13

718351main_composite_labels_673.jpg› Larger image (composite - labels)

› Larger image (composite - no labels)

This composite of the giant barred spiral galaxy NGC 6872 combines visible light images from the European Southern Observatory's Very Large Telescope with far-ultraviolet (1,528 angstroms) data from NASA's GALEX and 3.6-micron infrared data acquired by NASA's Spitzer Space Telescope. A previously unsuspected tidal dwarf galaxy candidate (circled) appears only in the ultraviolet, indicating the presence of many hot young stars. IC 4970, the small disk galaxy interacting with NGC 6872, is located above the spiral's central region. The spiral is 522,000 light-years across from the tip of one outstretched arm to the tip of the other, which makes it about 5 times the size of our home galaxy, the Milky Way. Images of lower resolution from the Digital Sky Survey were used to fill in marginal areas not covered by the other data. Credit: NASA's Goddard Space Flight Center/ESO/JPL-Caltech/DSS

The spectacular barred spiral galaxy NGC 6872 has ranked among the biggest stellar systems for decades. Now a team of astronomers from the United States, Chile and Brazil has crowned it the largest-known spiral, based on archival data from NASA's Galaxy Evolution Explorer (GALEX) mission, which has since been loaned to the California Institute of Technology, Pasadena, Calif.

Measuring tip-to-tip across its two outsized spiral arms, NGC 6872 spans more than 522,000 light-years, making it more than five times the size of our Milky Way galaxy.

"Without GALEX's ability to detect the ultraviolet light of the youngest, hottest stars, we would never have recognized the full extent of this intriguing system," said lead scientist Rafael Eufrasio, a research assistant at NASA's Goddard Space Flight Center in Greenbelt, Md., and a doctoral student at Catholic University of America in Washington. He presented the findings Thursday at the American Astronomical Society meeting in Long Beach, Calif.

The galaxy's unusual size and appearance stem from its interaction with a much smaller disk galaxy named IC 4970, which has only about one-fifth the mass of NGC 6872. The odd couple is located 212 million light-years from Earth in the southern constellation Pavo.

Astronomers think large galaxies, including our own, grew through mergers and acquisitions -- assembling over billions of years by absorbing numerous smaller systems.

Intriguingly, the gravitational interaction of NGC 6872 and IC 4970 may have done the opposite, spawning what may develop into a new small galaxy.

"The northeastern arm of NGC 6872 is the most disturbed and is rippling with star formation, but at its far end, visible only in the ultraviolet, is an object that appears to be a tidal dwarf galaxy similar to those seen in other interacting systems," said team member Duilia de Mello, a professor of astronomy at Catholic University.

718355main_simulatio_labels-673.jpg› Larger image (simulation - labels)

› Larger image (simulation - no labels)

Computer simulations of the collision between NGC 6872 and IC 4970 reproduce the basic features of the galaxies as we see them today. They indicate that IC 4970's closest encounter occurred 130 million years ago and that the smaller galaxy followed a path (dashed curve) close to the plane of the spiral's disk and in the same direction it rotates. Credit: NASA's Goddard Space Flight Center, after C. Horellou (Onsala Space Observatory) and B. Koribalski (ATNF)

The tidal dwarf candidate is brighter in the ultraviolet than other regions of the galaxy, a sign it bears a rich supply of hot young stars less than 200 million years old.

The researchers studied the galaxy across the spectrum using archival data from the European Southern Observatory's Very Large Telescope, the Two Micron All Sky Survey, and NASA's Spitzer Space Telescope, as well as GALEX.

By analyzing the distribution of energy by wavelength, the team uncovered a distinct pattern of stellar age along the galaxy's two prominent spiral arms. The youngest stars appear in the far end of the northwestern arm, within the tidal dwarf candidate, and stellar ages skew progressively older toward the galaxy's center.

The southwestern arm displays the same pattern, which is likely connected to waves of star formation triggered by the galactic encounter.

A 2007 study by Cathy Horellou at Onsala Space Observatory in Sweden and Baerbel Koribalski of the Australia National Telescope Facility developed computer simulations of the collision that reproduced the overall appearance of the system as we see it today. According to the closest match, IC 4970 made its closest approach about 130 million years ago and followed a path that took it nearly along the plane of the spiral's disk in the same direction it rotates. The current study is consistent with this picture.

As in all barred spirals, NGC 6872 contains a stellar bar component that transitions between the spiral arms and the galaxy's central regions. Measuring about 26,000 light-years in radius, or about twice the average length found in nearby barred spirals, it is a bar that befits a giant galaxy.

The team found no sign of recent star formation along the bar, which indicates it formed at least a few billion years ago. Its aged stars provide a fossil record of the galaxy's stellar population before the encounter with IC 4970 stirred things up.

"Understanding the structure and dynamics of nearby interacting systems like this one brings us a step closer to placing these events into their proper cosmological context, paving the way to decoding what we find in younger, more distant systems," said team member and Goddard astrophysicist Eli Dwek.

The study also included Fernanda Urrutia-Viscarra and Claudia Mendes de Oliveira at the University of Sao Paulo in Brazil and Dimitri Gadotti at the European Southern Observatory in Santiago, Chile.

The GALEX mission is led by the California Institute of Technology in Pasadena, which is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, also in Pasadena, manages the mission and built the science instrument. GALEX was developed under NASA's Explorers Program managed by NASA's Goddard Space Flight Center. In May 2012, NASA loaned GALEX to Caltech, which continues spacecraft operations and data management using private funds

Link to comment
Share on other sites

717541main_pia16605-43_946-710.jpg

Blazing Black Holes Spotted in Spiral Beauty

This new view of spiral galaxy IC 342, also known as Caldwell 5, includes data from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR. High-energy X-ray data from NuSTAR have been translated to the color magenta, and superimposed on a visible-light view highlighting the galaxy and its star-studded arms. NuSTAR is the first orbiting telescope to take focused pictures of the cosmos in high-energy X-ray light; previous observations of this same galaxy taken at similar wavelengths blurred the entire object into one pixel.

The two magenta spots are blazing black holes first detected at lower-energy X-ray wavelengths by NASA's Chandra X-ray Observatory. With NuSTAR's complementary data, astronomers can start to home in on the black holes' mysterious properties. The black holes appear much brighter than typical stellar-mass black holes, such as those that pepper our own galaxy, yet they cannot be supermassive black holes or they would have sunk to the galaxy’s center. Instead, they may be intermediate in mass, or there may be something else going on to explain their extremely energetic state. NuSTAR will help solve this puzzle.

IC 342 lies 7 million light-years away in the Camelopardalis constellation. The outer edges of the galaxy cannot be seen in this view.

This image shows NuSTAR X-ray data taken at 10 to 35 kiloelectron volts.

The visible-light image is from the Digitized Sky Survey

Link to comment
Share on other sites

Archived

This topic is now archived and is closed to further replies.

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...